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Abstract

This paper studies the dynamics of a vector-host illness model with a time-based delay and a
saturated treatment function. The human population is divided into three compartments, while
the vector population is categorized into two groups. A treatment function is introduced to ac-
count for the limited capacity of the healthcare system. Four control strategies are identified to
reduce the infected population and increase the number of susceptible and recovered individu-
als. The analysis demonstrates endemic and disease-free equilibria exhibit stability depending
on the basic reproduction number. Additionally, the study addresses optimal control with time
delays, revealing the impact of delayed therapies on disease dynamics and control strategies.
Numerical simulations are used to support and complement the theoretical conclusions.
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1 Introduction

Mathematical modeling is an essential tool for understanding the dynamics of infectious dis-
eases, particularly vector-borne diseases, which pose a significant global health threat. Diseases
such as Malaria, dengue, Zika, and chikungunya account for millions of infections and deaths
annually. Vectors, including mosquitoes, ticks, and flies, serve as critical biological agents that
transmit infectious pathogens between humans or from animals to humans. The value of math-
ematical models lies in their ability to simulate these transmission processes, offering insights
into the interactions between vectors and host populations. Such models are crucial for formu-
lating and assessing control strategies aimed at reducing the spread of infections. Specifically,
models that incorporate saturated treatment functions provide a more realistic representation of
healthcare systems, which often face limitations in treatment capacities. By accounting for these
constraints, the models allow for more accurate predictions and evaluations of control measures
[19].

Vector-borne diseases disproportionately affect vulnerable populations, particularly children
in developing nations, emphasizing the urgent need for a comprehensive understanding of vector-
host dynamics and the development of effective intervention strategies. Recent studies havedemon-
strated the practical value of mathematical models in addressing real-world infectious disease
challenges. These models extend to the analysis of complex diseases under varying conditions,
offering valuable theoretical and empirical insights for public health authorities. For example,
a stochastic HTLV-I infection model highlighted the role of environmental noise in determining
disease extinction or persistence through the stochastic reproduction number, emphasizing the
importance of stochasticity in infection dynamics [6]. Similarly, a fractional-order two-patch tu-
berculosis model showed that populationmovement and backward bifurcation affect disease pro-
gression, with the disease-free equilibrium being globally stable when R0 ≤ 1, and the fractional
order α reflecting disease awareness [15]. Additionally, a nonlinear model combining vaccination
and media awareness as controls demonstrated, through optimal control theory, that hyperbolic
impact functions effectively mitigate infections and reduce epidemic costs [23].

Optimal control theory has emerged as a powerful mathematical framework in disease mod-
eling, playing a significant role in informing public health decisions. By applying mathematical
optimization techniques, researchers can identify the most effective intervention methods-such as
vaccination, treatment, and quarantine while accounting for resource limitations. Optimal con-
trol techniques have been used to guide immunization programs by determining the best timing
and distribution of vaccines to efficiently reduce the spread of infections [24]. These methods are
particularly useful in regions with limited healthcare resources, where efficient allocation is es-
sential for achieving the greatest impact. Studies have shown that optimal control approaches can
significantly improve intervention effectiveness in various vector-borne diseases, including Zika
and dengue, where temporal dynamics and spatial factors play critical roles in disease transmis-
sion [21]. Understanding these temporal dynamics, how the number of cases changes over time
and how interventions can alter these trends is crucial for designing effective outbreak prevention
strategies.

The global burden of vector-borne diseases has increased considerably over the past fewdecades.
Dengue, in particular, has become one of the fastest-spreadingmosquito-borne viral diseases glob-
ally. Before 1970, dengue outbreaks were reported in only nine countries; by 1995, that number
had more than doubled, and the disease continues to spread into new regions. According to the
World Health Organization (WHO), there are 50 to 100 million cases of dengue fever annually,
with around 10, 000 children dying each year from dengue-related hemorrhaging. The severity
of dengue outbreaks highlights the need for effective mathematical models to better understand
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transmission dynamics and develop control strategies. Models incorporating time delays have
been particularly useful in this context, as they account for biological and logistical delays in the
disease transmission process such as the incubation period of the virus within mosquitoes and
humans or the time required for interventions to take effect [28].

In addition to time delays, demographic structures must also be considered in disease mod-
eling to capture the complexity of real-world transmission dynamics. Factors such as popula-
tion density, age distribution, and movement patterns significantly influence the spread of vector-
borne diseases. For example, models that incorporate demographic structures provide more ac-
curate predictions of disease spread in urban and rural settings, where population dynamics and
human-vector interaction rates vary significantly [14]. Recent studies in disease modeling have
integrated nonlinear dynamics, backward bifurcation, and optimal control measures, providing
deeper insights into vector-host interactions and effective intervention strategies. A deterministic
dengue model, calibrated with data from the 2017 Peshawar outbreak, estimated the basic repro-
duction number and optimized insecticide and vaccination strategies, revealing their cost-based
trade-offs in infection control [3].

For COVID-19, a model incorporating environmental contamination and vaccination demon-
strated that increased vaccination and reduced contamination significantly lower the reproduc-
tion number, while seasonal effects prolong persistence [20]. A nine-stage COVID-19 model for
India highlighted the importance of early pharmaceutical and non-pharmaceutical interventions
in flattening peaks and minimizing control costs [18]. Similarly, a nonlinear model showed that
environmental contamination amplifies infections, while effective sanitization ensures stability if
the reproduction number falls below one [27]. A compartmental SAIQJRmodel underscored that
combining pharmaceutical and non-pharmaceutical controls achieves better epidemic mitigation
compared to isolated strategies [22]. Lastly, a novel numerical method combining spectral colloca-
tion and parametric iteration accurately solves nonlinear optimal control problems, demonstrating
effectiveness across various applications [4].

Biswas et al. [9] analyzed SEIR models with vaccination constraints, showing the impact
of limited vaccine availability on disease control. Aldila et al. [5] demonstrated the effective-
ness of mosquito repellent treatments in controlling Dengue outbreaks through optimal control
strategies. Dwivedi et al. [12] calibrated a nonlinear vector-host model for dengue, highlighting
vaccination and treatment role in reducing infections and hospitalizations. Ratti and Kalra [25]
modeled Malaria and Rotavirus co-infection dynamics, showing global stability at the disease-
free equilibrium and the benefits of combined control measures. Bera et al. [7] studied an HTLV-I
model, identifying stability conditions and Hopf bifurcation dynamics, with sensitivity analysis
emphasizing key transmission parameters.

Understanding vector-host dynamics is crucial for controlling vector-borne diseases. The con-
cept of backward bifurcation, for example, illustrates how complex interactions between disease
transmission and treatment efforts can lead to multiple equilibrium points, complicating control
efforts. Additionally, models that incorporate saturated treatment functions, which account for
the limited capacity of healthcare systems provide a more realistic representation of control ef-
forts in practice [26]. Such models highlight the need for timely and effective interventions, as
delays or insufficient responses can result in severe outbreaks.

Human-vector interactions, particularlymosquito bites, are pivotal in the transmission of vector-
borne diseases such asMalaria and dengue. Wang et al. [31] analyzed amodel with age-stratified
host and vector populations, identifying stability conditions for infection-free and endemic equi-
libria based on the basic reproduction number. Thongsripong et al. [29] emphasized the vari-
ability in mosquito biting rates, challenging traditional assumptions and highlighting the need for
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empirical data to refine models of vector-borne disease transmission. Bera et al. [8] introduced a
fuzzy mathematical model for HTLV-I infection, exploring stability and persistence under impre-
cise biological parameters, with numerical simulations validating the theoretical results. Mondal
and Khajanchi [22] underscored the significance of incorporating ecological, social, and spatial
heterogeneity into mosquito-borne disease models to enhance intervention strategies. Khajanchi
et al. [17] developed a COVID-19 model integrating pharmaceutical and non-pharmaceutical in-
terventions, demonstrating their combined effectiveness in reducing transmission and flattening
epidemic peaks through optimal control methods.

Human mobility significantly influences the spatial and temporal dynamics of vector-borne
disease outbreaks. Acevedo et al. [1] demonstrated that while human movement reduces the ba-
sic reproduction number R0 in spatially heterogeneous settings, it can initially increase infection
prevalence by reducing exposure heterogeneity before ultimately lowering prevalence at highmo-
bility rates. Eder et al. [13] identified critical gaps in understanding urban vector-borne disease
(VBD) transmission, such as the roles of asymptomatic carriers, co-infections, and socioeconomic
factors, emphasizing the need for more comprehensive models. Das et al. [11] explored TB trans-
mission with re-infections, showing that backward bifurcation occurs whenR0 < 1, making erad-
ication contingent on reducing R0 below a critical threshold. Adams and Kapan [2] analyzed the
effects of structured human movement on dengue transmission using a metapopulation model,
highlighting the emergence of infection hubs due to frequent short human visits and advocating
for integrated public health strategies. Khajanchi et al. [16] investigated CD8+ T-cell responses to
HTLV-I infection, identifying three steady states governed by reproduction numbers R0 and R1,
with implications for HTLV-I pathogenesis and HAM/TSP progression.

In Section 2, we examine a mathematical model that captures the interactions between vec-
tors and hosts, incorporating time delays to account for biological lags in disease transmission
and intervention effects. In Section 3, stability analysis is performed to determine equilibrium
points, while optimal control techniques are applied to design intervention strategies that mini-
mize disease spread. The novelty of this approach lies in incorporating time delay and a saturated
treatment function, which provides a more realistic representation of healthcare system capacity
limitations. This framework enhances our understanding of how delayed responses and treat-
ment constraints impact the overall dynamics of vector-borne diseases, offering new insights into
effective disease control strategies.

2 Model Construction

Time delay is incorporated into the dynamics of the vector-host illness, and indicate the whole
population of humans by NH(t), which can be further subdivided into three distinct classes: sus-
ceptible humans SH(t), infected humans IH(t), and recovered humans RH(t) at any given time t.
Therefore,NH(t) = SH(t) + IH(t) +RH(t). A delay parameter τ is incorporated into the differen-
tial equation governing the dynamics of sensitive individuals to account for the time delay effect
(SH),

dSH

dt
(t) = ΛH − β1SH(t− τ)IV (t− τ)

1 + α1IV (t− τ)
− µHSH(t), (1)

where τ represents the time-based delay, capturing the lag in the response of susceptible humans
to changes in the infection dynamics caused by infected vectors (IV ). This delay reflects the time
it takes for individuals to become infected after contact with infected vectors and subsequently
contribute to the pool of infected humans. Incorporating time delay into mathematical models
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of vector-host diseases is crucial for accurately representing the temporal dynamics of disease
transmission and better analyzing how control strategies affect the management and spread of
illness. The dynamics of infected humans (IH), while accounting for the treatment function, are
modeled with the addition of a delay parameter τ to the differential equation,

dIH
dt

(t) =
β1SH(t− τ)IV (t− τ)

1 + α1IV (t− τ)
− (µH + δH)IH(t)− γuIH(t)

1 + buIH(t)
. (2)

The delay in the response of infected humans to changes in the infection dynamics due to infected
vectors (IV ) and the treatment function. The treatment function, described by the term γ

1 + buIH
,

is essential for predicting the dynamics of illness. It reflects the capacity of the healthcare system
to provide treatment, where γ

b
is the maximum amount of medical resources available in a given

amount of time, and 1

1 + buIH
explains the impact of afflicted people delaying getting treatment.

The effectiveness of control methods and the disease spread in a real-world setting require a more
accurate portrayal of the temporal dynamics of disease transmission and treatment, which ismade
possible by the inclusion of time delay along with the treatment function. Based on the treatment
function and natural death, the differential equation can be modified to represent the dynamics
of the recovered human population (RH),

dRH

dt
(t) =

γuIH(t− τ)

1 + buIH(t− τ)
− µHRH(t). (3)

The temporal aspect of how the recovery process responds to changes in the prevalence of infected
humans (IH). This time delay can be crucial in simulating the dynamics of vector-host illnesses
and comprehending the effects of time delays on disease control and management, since it repre-
sents the lag in the effect of therapy on the recovery of infected persons. Considering the contact
rates with infected humans, the differential equation for the susceptible vector population (SV )
can be revised as follows,

dSV

dt
(t) = ΛV − β2SV (t− τ)IH(t− τ)

1 + α2IH(t− τ)
− µV SV (t), (4)

where τ represents the time-based delay, signifying the lag in the response of susceptible vectors

to changes in infection dynamics caused by infected humans. The term β2SV (t− τ)IH(t− τ)

1 + α2IH(t− τ)
ac-

counts for the delayed effect of contact between susceptible vectors and infected humans, with
α2 being the saturation constant. A more realistic depiction of the temporal dynamics in the in-
teraction between susceptible vectors and infected people is possible by include time delay in the
susceptible vector population equation. To offer amore precisemodel for the spread of illnesses in-
cluding vectors and hosts, it is imperative to comprehend how temporal delays affect the response
of susceptible vectors to infection dynamics. The dynamics of the infected vector population (IV ),
taking into account the frequency of interaction with infected humans (IH), can be modified in
the differential equation as follows,

dIV
dt

(t) =
β2SV (t− τ)IH(t− τ)

1 + α2IH(t− τ)
− µV IV (t). (5)

Signifying time lag into the response of infected vectors to changes in infection dynamics caused by
infected humans. The temporal dynamics in the interaction between infected vectors and infected
people can be more accurately represented by adding time delay to the infected vector population
equation. Introducing time delay into the system of (1)−(5) account for the temporal aspects of
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disease transmission. For each compartment, a time delay parameter τ is included to represent
the lag in the response of each population to changes in infection dynamics,

dSH

dt
(t) = ΛH − β1SH(t− τ)IV (t− τ)

1 + α1IV (t− τ)
− µHSH(t),

dIH
dt

(t) =
β1SH(t− τ)IV (t− τ)

1 + α1IV (t− τ)
− (µH + δH)IH(t)− γuIH(t)

1 + buIH(t)
,

dRH

dt
(t) =

γuIH(t− τ)

1 + buIH(t− τ)
− µHRH(t),

dSV

dt
(t) = ΛV − β2SV (t− τ)IH(t− τ)

1 + α2IH(t− τ)
− µV SV (t),

dIV
dt

(t) =
β2SV (t− τ)IH(t− τ)

1 + α2IH(t− τ)
− µV IV (t),

(6)

where the description of parameters can be refer to Table 1. A more accurate depiction of the
dynamics is possible by include time delays in each equation, which take into consideration how
long it takes for each population to react to variations in the dynamics of the infection. This mod-
ification is required to provide a more realistic model for studying the spread of disease and its
treatment, as well as to correctly depict the temporal characteristics of disease transmission from
vectors to hosts.

Table 1: Description of parameters.

Parameter Description
ΛH Birth rate of susceptible humans
β1 Rate of transmission of the infection from vulnerable individuals to infected vec-

tors
α1 Saturated factor for the interaction between infected vectors and susceptible hu-

mans
µH The natural death rate among people
δH Human mortality rate from disease
γ Recovery rate of humans
u Control parameter influencing the spread of the infection from susceptible to in-

fected
persons

b Rate of infection transmission from susceptible to infected persons
ΛV Suppression rate of vulnerable vectors
β2 Transmission rate from infected humans to susceptible vectors
α2 Saturation factor for the relationship between susceptible vectors and sick people
µV Natural mortality rate of vectors

The initial conditions are as follows when adding time delay to the set of equations:

SH(0) ≥ 0, IH(0) ≥ 0, RH(0) ≥ 0, SV (0) ≥ 0, IH(0) ≥ 0. (7)

These prerequisites guarantee that at the beginning time point, the values of all population are
non-negative. Each population react to variations in the dynamics of infection is behind due to the
temporal delay. Nevertheless, the insertion of time delay has no effect on the starting conditions
themselves. The physical model interpretation is ensured by the non-negativity requirements,
and they reflect the initial values of each population at time t = 0. As a result, the beginning cir-
cumstances with time delay are the same as previously mentioned, and they are very important in
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deciding how the system behaves as it changes over time. Introducing time delay into the equation
describing the dynamics of the human population by considering a time delay parameter τ ,

dNH

dt
(t) = ΛH − µHNH(t)− δHIH(t− τ). (8)

The evolution of the human population over time is represented by this equation, accounting for
the birth rate (ΛH), natural death rate (µH), and disease-induced death rate (δH), with a time
delay for the population of diseased humans (IH). The inequality dNH

dt
(t) + µHNH(t) ≤ ΛH

holds, making sure that the rate of increase in the human population (births minus deaths) is
bounded by the birth rateΛH . This disparity accounts for the effects on total population dynamics
of both disease-induced and natural mortality. Introducing time delay into the inequalities with
a parameter τ as,

0 ≤ SH(t),

IH(t),

RH(t) ≤ ΛH

µH
(1− e−µH(t−τ)) +

NH

SH(0) + IH(0) +RH(0)
e−µH(t−τ).

(9)

The term ΛH

µH
(1−e−µH(t−τ)) represents the contribution from births and natural deaths up to time

t− τ , and the term NH

SH(0) + IH(0) +RH(0)
e−µH(t−τ) represents the contribution from the initial

conditions. By accounting for the delayed impacts of births, deaths, and beginning circumstances
on the susceptible, infected, and recovered populations over time, time delaymay be incorporated
into these inequalities to provide a more thorough understanding of the limitations on the pop-
ulation dynamics. The dynamics of the total vector population (NV = SV + IV ) with time delay
parameter τ can be modified as,

dNV

dt
(t) = ΛV −NH(t− τ). (10)

The exact solution for this differential equation is,

NV (t) =
ΛV

µV
+ ce−µV (t−τ), (11)

where c is integration constant. Now, considering the limit as τ → ∞, the term e−µV (t−τ) ap-
proaches zero, and we obtain,

lim
t→0

NV (t) =
ΛV

µV
. (12)

Thus, as t approaches infinity, we have 0 ≤ NV ≤ ΛV

µV
. The viable area for the suggested model ϕ,

considering time delay is

ϕ =

{
(SH , IH , RH , SV , IV ) ∈ R

5|NH ≤ ΛH

µH
, NV ≤ ΛV

µV

}
. (13)

Taking into consideration the birth, death, and time-delayed dynamics, this area establishes the
permissible values for the compartments (susceptible, infected, recovered, susceptible vector, and
infected vector) in the model.

Lemma 2.1. The setϕ =

{
(SH , IH , RH , SV , IV ) ∈ R

5|NH ≤ ΛH

µH
, NV ≤ ΛV

µV

}
is positively invariant

with time delay.
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Proof. The standard comparison theorem can be applied to demonstrate that the set ϕ is said to be
positively invariant. Let’s consider the following comparison functions,

0 ≤ NH(t) ≤ NH(0)e−µHt +
ΛH

µH

(
1− e−µHt

)
, (14)

0 ≤ NV (t) ≤ NV (0)e
−µV t +

ΛV

µV

(
1− e−µV t

)
. (15)

As t → ∞,

0 ≤ NH ≤ ΛH

µH
, 0 ≤ NV ≤ ΛV

µV
. (16)

∴ ϕ is positively invariant.

3 The State of Equilibrium and Local Stability

This section analyzes the local stability of the endemic and disease-free equilibria of system
(6), incorporating time delays to account for delays in transmission and recovery processes. Time
delays are introduced to model the period between exposure and the onset of infectiousness in
the human and vector populations, which has significant implications for disease dynamics.

3.1 Disease-free equilibrium

The disease-free equilibrium without time delay is expressed as,

P0 = (S0H , 0, 0, S0V , 0) =

(
ΛH

µH
, 0, 0,

ΛV

µV
, 0

)
. (17)

The incubation period or the delay between exposure and infectiousness in both human and vector
populations, modifies the disease-free equilibriumwhile delay introduced. Themodified disease-
free equilibrium is,

P0(τ) = (S0H (τ), 0, 0, S0V (τ), 0) , (18)

where S0H (τ) and S0V (τ) are solutions to the following delay differential equations,

S0H (τ) =
ΛH

µH
eµHτ , (19)

S0V (τ) =
ΛV

µV
eµV τ . (20)

Thus, the disease-free equilibrium with time delay becomes,

P0(τ) =

(
ΛH

µH
eµHτ , 0, 0,

ΛV

µV
eµV τ , 0

)
. (21)

The fact that transmission does not occur immediately after exposure, modeling the delayed pro-
gression to an infectious state in both human and vector populations when time delay reflects.
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3.2 Basic reproduction number R0

To understand the effect of the time delay on disease transmission, the basic reproduction
number R0 is calculated. Time delays are incorporated into the transmission terms, using the
next-generation matrix [19, 27] approach. The transmission matrix becomes,

F =

 0 β1e
−α1τ

ΛH

µH
β2e

−α2τ 0

 , (22)

and the transition matrix is given by,

V =

[
µH + δH + γu 0

0 µV

]
. (23)

The basic reproduction number R0, which governs the stability of the disease-free equilibrium is
given by,

R0 =

√
β1β2ΛHΛV

µ2
HµV (µH + δH + γu)

e−(α1τ+α2τ), (24)

where the exponential terms e−α1τ and e−α2τ represent the effect of time delays in human-to-
vector and vector-to-human transmission. These delays reduce the effective transmission rate, as
the period between exposure and becoming infectious is prolonged. This directly impacts the
basic reproduction number, making it smaller as the delay increases.

3.3 Local stability of disease-free equilibrium

Theorem 3.1. The disease-free equilibriumP0 of the time-delayed system (6) is locally asymptotically stable
if R0 < 1.

Proof. The stability of the disease-free equilibrium depends on the basic reproduction number
R0 [27]. When R0 < 1, the infection cannot sustain itself within the population, meaning each
infected individual produces, on average, fewer than one new infection. Despite the time delay
in transmission, the system will return to the disease-free equilibrium. As long as R0 < 1, the
population remains disease-free in the long run, and the infection dies out.

3.4 Endemic equilibrium

For R0 > 1, the system admits an endemic equilibrium P ∗
1 , where the disease persists within

the population. The endemic equilibrium is defined by the following set of equations,

P ∗
1 = (S∗

H , I∗H , R∗
H , S∗

V , I
∗
V ), (25)
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with the components of the endemic equilibrium given by,

S∗
H =

δH
buI∗H + 1

µH

buI∗H + 1 + γu

I∗H
α1β2ΛV (β2 + α2µV ) + µ2

V β1β2ΛV (buI∗H + 1)
,

R∗
H =

γuI∗H
µH(buI∗H + 1)

,

S∗
V =

ΛV

α2I∗H + 1

β2I
∗
H + α2I

∗
HµV

β2I∗H + α2I∗HµV + µV
,

I∗V =
β2I

∗
H + α2I

∗
HµV

β2I∗H + α2I∗HµV + µV
.

The delayed transmission process impacts the endemic equilibrium, as the time-delay infected
both human and vector populations is factored into the system. This means that longer delays
lead to a slower rise to endemic levels.

3.5 Stability of the endemic equilibrium

Theorem 3.2. If R0 > 1, the endemic equilibrium P ∗
1 of the time-delayed system (6) is locally asymptoti-

cally stable.

Proof. The stability of the endemic equilibrium is determined by examining the Jacobian matrix
J∗ at P ∗

1 , incorporating the time delay into the transmission terms. The Jacobian matrix is,

J =



J11 0 0 −β1S
∗
H(1 + α1I

∗
V )

2

(1 + α1I∗V )
2

β1I
∗
V

1 + α1I∗V

0 J22 0
β1S

∗
H(1 + α1I

∗
V )

2

(1 + α1I∗V )
2

0

0 0 J33 0 0

0 0 −β2S
∗
V (1 + α2I

∗
H)2 0

−β2I
∗
H

1 + α2I∗H

0 0
β1S

∗
V (1 + α1I

∗
H)2

(1 + α1I∗H)2
β2I

∗
H

1 + α2I∗H
−µV


, (26)

where

J11 = −µH − β1I
∗
V e

−α1τ

1 + α1I∗V
,

J22 = −µH − δH − γu(1 + buI∗H)2

(1 + buI∗H)2
,

J33 = −β1S
∗
H(1 + α1I

∗
V )

2

(1 + α1I∗V )
2

.

The characteristic equation becomes,

λ4 +K1e
−α1τλ3 +K2e

−α2τλ2 +K3e
−α1τλ+K4e

−bτ = 0, (27)
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where the coefficients K1,K2,K3,K4 are given by,

K1 =
µ∗
H +m1 +m5

Q1 + 2µV
> 0,

K2 =
µ∗
H(m5 +Q1) +m4(µ

∗
H +Q1 + µ∗

V )

2µV (µ∗
H +m5 +Q1)

+
m1(m4 +m5 +Q1 + 2µV )

µ2
V + (m4m5 −m2m3)e−α1τ

,

K3 =
m4e

−α1τ

Q1µH + µV (µH +Q1)

+
µ2
V e

−α1τ

2µH(m5 +Q1 + µV ) + µV (2(m5 +Q1) + µV ) + (m4m5 −m2m3)
(µH + µV ),

K4 =
µV e

−α1τ

µH((m5 +Q1)µV +m4Q1) +m1(m5 +Q1)(m4 + µV ) + (m4m5 −m2m3)e−α1τ
µHµV .

Here, the coefficients m1,m2,m3,m4,m5, Q1 represent various transmission and recovery rates,

m1 = β1I
∗
V

1

1 + α1I∗V
e−α1τ ,

m2 = β2S
∗
V

1

1 + α2I∗H
e−α2τ ,

m3 = β1S
∗
H

1

1 + α1I∗V
e−α1τ

1

(1 + α1I∗V )
2
e−α1τ ,

m4 = β2I
∗
H

1

1 + α2I∗H
e−α2τ ,

m5 = γu
1

1 + buI∗H
e−bτ ,

Q1 = δH + µH .

The condition (m4m5−m2m3) > 0 ensures that all the coefficientsK1,K2,K3,K4 are positive. Sat-
isfying the Routh-Hurwitz criteria guarantees that the endemic equilibrium P ∗

1 is locally asymp-
totically stable, even when time delay is incorporated into the transmission dynamics.

4 Backward Bifurcation’s Development

The bifurcation parameter β1 for the system (6) is examined. At the critical point R0 = 1, the
expression for β1 accounting for time delay becomes,

β1 =
µHµ2

V (δH + µH + γu)

β2ΛHΛV e−α1τ
. (28)

This modified expression for β1 reflects the delayed progression to infectiousness in both the hu-
man and vector populations. Time delay introduces an exponential factor, which reduces the ef-
fective transmission rate and alters the bifurcation behavior by shifting the bifurcation threshold.

To analyze the systemdynamics, the variables are transformed into y1, y2, y3, y4, y5, and the system
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is represented as dy

dt
= f , where f = (f1, f2, f3, f4, f5) is given by,

dy1
dt

= ΛH − β1y1y5
1 + α1y5

e−τµH − µHy1,

dy2
dt

=
β1y1y5
1 + α1y5

e−τµH − (µH + δH)y2 −
γuy2

1 + buy2
,

dy3
dt

=
γuy2

1 + buy2
e−τµH − µHy3,

dy4
dt

= ΛV − β2y4y2
1 + α2y2

e−τµV − µV y4,

dy5
dt

=
β2y4y2
1 + α2y2

e−τµV − µV y5.

(29)

Time delays τµh
and τµv

are introduced for µH and µV , respectively. The Jacobian matrix for the
system becomes,

J =



J11 0 0 0 J15

J21 −(µH + δH) 0 − γu

(1 + buy2)2e
−τµh

µH
0

0 0 uγ − µH 0 0

0 0 0 −µV e
−τµvµV 0

0 0 0
β2y2

1 + α2y2
e−τµvµV −µV e

−τµvµV


, (30)

where

J11 = −µHe−τµh
µH ,

J15 = −(uγ + δH + µH)µ2
V β2ΛV e

−τµvµV ,

J21 =
β1y5

(1 + α1y5)2e
−τµh

µH
.

The eigenvectors reflect the influence of time delay on the system dynamics and themodified right
eigenvectors are

v1 = 0, v3 = 0, v4 = 0, v5 =
v2µV

β2ΛV (δH + γH + γu)e−τµvµV
, v2 = v2 > 0.

The modified left eigenvectors are

W1 = −W2
1

δH + µH
e−τµh

µH ,

W3 =
γu

µH
e−τµh

µH ,

W4 = −β2ΛV

µ2
V

e−τµvµV ,

W5 =
β2ΛV

µ2
V

e−τµvµV ,

W2 = W4 > 0.
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Time delay modifies the expressions for the bifurcation coefficients a1 and b1,

a1 = −2v2W2

µ2
V

[
µHµV

β2ΛHΛV
G1 + α1β1β2

µHµ4
V

µV
e−τµh

µH

]
, (31)

where

G1 = µHµV e
−τµh

µH

[
µV

α2Z
′ − bγue−τµvµV + β2Z

′
e−τµvµV + β1β2ΛV Z

′
e−τµvµV

]
,

Z
′
= δH + µH + γu.

The expression for b1 is

b1 =
β2v2W2ΛHΛV

µHµ2
V

e−τµvµV . (32)

For backward bifurcation occur, both a1 and b1 must be positive. In this case, however, a1 is nega-
tive due to the time delay, preventing backward bifurcation. The negative value of a1 indicates that
the time delay in the transmission process weakens the conditions for multiple stable equilibria to
coexist.

5 Lyapunov Approach for Global Stability of Disease-Free Equilibrium

This section examines the global stability of the model (6) by defining a Lyapunov function
[27] to assess the stability of the disease-free equilibrium. The analysis incorporates time delays
in both the human and vector populations, specifically associated with µH and µV . The following
theorem presents the main result for the global stability of the disease-free equilibrium.

Theorem 5.1. The disease-free equilibrium of model (6), taking into account the effects of time delays
associated with µH and µV , is globally asymptotically stable if R0 < 1 and unstable otherwise.

Proof. To prove this result, the following Lyapunov function is defined for the disease-free equi-
librium,

L(t) = U − Sh
0 − Sh

0 IH
SH

Sh
0

+ β2S
v
0 IH + Z

(
SV − Sv

0

Sv
0

)
− Sv

0 − Sv
0 IV

SV

Sv
0

+ ZIV , (33)

where

U = β2S
v
0

(
SH − Sh

0

Sh
0

)
,

Z = δH + µH + γu.

The Lyapunov function L(t) captures the deviation of the state variables from their disease-free
equilibrium values. The terms involving SH , SV , and IH represent the delayed effects in the dy-
namics of the human and vector populations. The function L(t) is structured to ensure that its
time derivative is negative forR0 < 1. Taking the time derivative of L(t) using the system (6), the
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following expression is obtained,

L0(t) = β2S
v
0

(
SH − Sh

0

Sh
0

)
− Sh

0

SH
ΛH − µHSH − β2S

v
0

(
SH − Sh

0

Sh
0

)
β1SHIV
1 + α1IV

− β2S
v
0

β1SHIV
1 + α1IV

− (µH + δH + γu)β2S
v
0

β1SHIV
1 + α1IV

+ (µH + δH + γu)β2S
v
0

β2S
v
0 (SH + IH +RH)

β2ΛV

− µV SV − (µH + δH + γu)β2S
v
0

β2S
v
0 (SH + IH +RH)

β2ΛV

β1SHIV
1 + α1IV

. (34)

Substituting Sh
0 =

ΛH

µH
and Sv

0 =
ΛV

µV
, and simplifying the terms, the following expression for

L0(t) is obtained,

L0(t) = −β2ΛV
µH

µV

(
SH(t− τ1)− Sh

0

Sh
0

)2

SH(t− τ1)− µV Z

(
SV (t− τ2)− Sv

0

Sv
0

)
SV (t− τ2)

− β2S
v
0 bu(µH + δH)

IH(t− τ1)
2

1 + buIH(t− τ1)
− ZµV α1

IV (t− τ2)
2

(1 + α1IV (t− τ2))2

− IV (t− τ2)(1 + α1IV (t− τ2))ZµV (1−R2
0)

1 + α1IV (t− τ2)
, (35)

where delay is introduced in the Lyapunov functionL0(t), it can be observed thatL0(t) is negative
if R0 < 1, and L0(t) = 0 if SH = Sh

0 , SV = Sv
0 , IH = IV = 0 . Therefore, the largest collection

of compact invariants (SH , IH , RH , SV , IV ) ∈ Φ : L0(t) = 0, proving global asymptotic stability of
the disease-free equilibrium.

6 Global Stability and Endemic Equilibrium

The delayed system (6) considering and reducing the system with SV =
ΛV − µV IV

µV
e−τµV in

the final equation, the following system of equations yields the new endemic equilibrium point
P ∗
2 ,

dSH

dt
= ΛH − β1SHIV

1 + α1IV
e−τµV − µHSH ,

dIH
dt

=
β1SHIV
1 + α1IV

e−τµV − δHIH − γuIH
1 + buIH + h

e−τµV ,

dIV
dt

=
β2IH(ΛV − µV IV )

µV (1 + α2IH)
e−τµV − µV IV .

(36)

As long as the initial conditions are non-negative, we have

SH(0) ≥ 0, IH(0) ≥ 0, IV (0) ≥ 0.

Theorem 6.1. The reduced vector-host system (36) with time delay is globally asymptotically stable at the
endemic equilibrium point P ∗

2 whenever R0 > 1.
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Proof. The Jacobian matrix of the system at the endemic equilibrium point P ∗
2 is given by,

J =



−µH − β1IV
1 + α1IV

0 − β1SV

(1 + α1IV )2
− β1IV
1 + α1IV

−µH − δH − γu

(1 + buIH)2
0

β1SV

(1 + α1IV )2
β1IV

1 + α1IV

0 0 −β2(ΛV − µV IV )

µV (1 + α2IH)2
β2IH

1 + α2IH

0 0 −β2(1 + α2IH) −µV


. (37)

We define the subsequent second compound matrix in relation to matrix J as follows,

J [2] =


Z11 β1SH(1 + α1IV )

2 β1SH(1 + α1IV )
2 β2(ΛV − µV IV )(1 + α2IH)2µV

0 Z22 0 0

0 0 β1IV (1 + α1IV ) 0

Z33 0 0 0

 , (38)

where

Z11 = −γu(1 + buIH)2 − β1IV (1 + α1IV )e
−α1τ − 2µH − δH ,

Z22 = −β1IV (1 + α1IV )− β2IH(1 + α2IH)e−α2τ − µH − µV ,

Z33 = −γu(1 + buIH)2 − β2IH(1 + α2IH)e−α2τ − δH − µH − µV .

The time delays e−α1τ and e−α2τ are incorporated through the exponential terms. To account for
the impact of time delay in each element, we introduce a matrix T . The modified expression for
Tf and TfT

−1 with the introduction of time delay is

Tf =

0 0 0

0 IV IHe−α1τ −IV e
−α2τ

0 IHIV e
−α1τ IV IHe−α2τ

 , (39)

and

TfT
−1 =

0 0 0

0 IHe−α1τ −IV e
−α2τ

0 IV e
−α1τ IHe−α2τ

 . (40)

The matrix TfJ
[2]T−1 is obtained as,

TfJ
[2]T−1 =

Z11 β1SHIV (1 + IV )
2IH β1SHIV (1 + α1IV )

2IH

Z21 0 0

0 β1IV (1 + α1IV ) Z33

 , (41)

where Z21 = IHβ2(ΛV − µV IV )IV (1 + α2IH)2. The matrix B = TfT
−1 + TfJ

[2]T−1 is split into
four blocks,

B =

[
W11 W12

W21 W22

]
, (42)
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where

W11 = −µH − δH − γu
(1 + buIH)2

IH
− β1IH

1 + α1IV
IH

,

W12 = max

(
β1SHIV

1

IH
(1 + α1IV )

2, β1SHIV
1

IH
(1 + α1IV )

2

)
,

W21 = IHβ2(ΛV − µV IV )
IV

µV (1 + α1IH)2
,

W22 =

[
−β2IH(1 + α2IH)− µH − β1IV (1 + α1IV )− µV I0IH − I0vIV

β1IV (1 + α1IV )− γu(1 + buIH)2 − δH I0IV − I0hIH

]
.

Let µ(W ) denote the Lozinski measure, then

µ(W ) ≤ sup(f1, f2), (43)

where the components contributing to f1 and f2 are

f1 = µ(W11) + c,

f2 = |W21|+ µ(W22).

The Lozinski measure forW11 andW22 is given by,

µ(W11) = −µH − δH − γu(1 + buIH)2 − β1IV (1 + α1IV ),

|W21| = max

(
β1SHIV

1

SH
(1 + α1IV )

2, β1SHIV
1

IH
(1 + α1IV )

2

)
.

Now,

I0hIH =
IV IHβ1SH

1 + α1IV
− µH − δH − γu

1 + buIH
, (44)

leading to the expression for f1,

f1 ≤ I0hIH − µH − β1IV
1 + α1IV

. (45)

The expression for µ(W22)with time delay is,

µ(W22) = sup

 I0hIH − I0vIV − β1IV
1 + α1IV

− β2IV
1 + α1IV

− µH − µV +
β1IV

1 + α1IV
,

I0hIH − I0vIV −K1

 , (46)

whereK1 is a constant. The overall expression for n is given by,

n = lim
t→∞

sup

(
1

t

∫ t

0

µ(W ) ds

)
≤ 1

t
(I0hIH − µ) . (47)

This implies that,

n ≤ −µ2 < 0. (48)

Consequently, the examined system is globally asymptotically stable with time delay based on the
aforementioned requirements.
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7 The Optimal Control Problem

Using the system (6) with modified birth rates and optimal control variables, the delayed op-
timal control system becomes,

dSH

dt
= ΛH + cNH − β1SHIV

1 + α1IV
(1− u1)e

−µhτ − µHSH ,

dIH
dt

=
β1SHIV
1 + α1IV

(1− u1)e
−µhτ − (µH + δH)IH − γu4IH

1 + bu4IH
e−µhτ ,

dRH

dt
=

γu4IH
1 + bu4IH

e−µhτ − µHRH ,

dSV

dt
= ΛV NV (1− u2)e

−µvτ − β2SV IH
1 + α2IH

(1− u3)e
−µvτ − b0u2SV − µV SV ,

dIV
dt

=
β2SV IH
1 + α2IH

(1− u3)e
−µvτ − µV IV − b0u2IV e

−µvτ .

(49)

The optimal control variables u1, u2, u3 and u4 govern the interventions in the system to minimize
infection in the humanpopulation. The adjusted birth rates and controls allow for amore complete
model, considering density impacts and the best methods for disease control. The aim is to reduce
infection in the human population. These controls affect the dynamics of the system, and the goal
is to determine the optimal distribution for these controls, which leads to,

dSH

dt
= ΛH + cNH − β1SHIV

1 + α1IV
(1− u1)e

−τ1S − µHSH ,

dIH
dt

=
β1SHIV
1 + α1IV

(1− u1)e
−τ2S − (µH + δH)IH − γu4IH

1 + bu4IH
e−τ2S ,

dRH

dt
=

γu4IH
1 + bu4IH

− µHRH ,

dSV

dt
= ΛV NV (1− u2)e

−τ3S − β2SV IH
1 + α2IH

(1− u3)e
−τ4S − b0u2SV − µV SV ,

dIV
dt

=
β2SV IH
1 + α2IH

(1− u3)e
−τ5S − µV IV − b0u2IV e

−µvτ ,

du1

dt
= 0,

du2

dt
= 0,

du3

dt
= 0,

du4

dt
= 0.

(50)

Timedelays extend the control variablesu(t) = (u1, u2, u3, u4) tou(t) = (u1, u2, u3, u4, τ1, τ2, τ3, τ4, τ5)
with corresponding Lebesgue measurable constraints,

0 ≤ ui(t) ≤ 1, t ∈ [0, T ], i = 1, 2, 3, 4; τi ≥ 0, i = 1, 2, 3, 4, 5.

The control set is denoted by ℧ = {(U1, U2, U3, U4, τ1, τ2, τ3, τ4, τ5)}. Taking into account the time
delay factors, the objective function for the vector-host control problem is,

J ′(u1, u2, u3, u4, τ1, τ2, τ3, τ4, τ5) =

∫ T

0

(
D1IH +D2NV +

Z ′

2

)
dt. (51)
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Here, the constants D1, D2, D3, D4, D5, and D6 represent weight or balancing constants and
Z ′ = D3u

2
1 +D4u

2
2 +D5u

2
3 +D6u

2
4. These constants provide a relative measurement of the inter-

ventions over the interval [0, T ]. The optimal control problem aims to find the control functions
ui(t) and τi(t) that minimize the objective function,

J ′(u∗
1, u

∗
2, u

∗
3, u

∗
4, τ

∗
1 , τ

∗
2 , τ

∗
3 , τ

∗
4 , τ

∗
5 ) = max

℧
J(u1, u2, u3, u4, τ1, τ2, τ3, τ4, τ5). (52)

8 Existence of the Optimality System

To demonstrate the existence of the control problem, the optimal control system (49) is out-
lined as follows,

Case 1: Verify that the system (49) is not empty for both the state and control variables.
Case 2: Confirm that the control set U is open and concave.
Case 3: Ensure that the equation on the right-hand side of system (49) is bounded, continuous,

and expressible as a linear function of u, with coefficients that depend on time and size.
Case 4: The integrandL(y′, u′, t′) of the objective function J ′ is concave and satisfies the follow-

ing inequality because there are constants l1, l2 > 0 andm∗ > 1,

l1 =
(
∥u1∥2 + ∥u2∥2 + ∥u3∥2

)m∗
2 − l2.

To validate Case 1, the state variables and controls are constrained in these circumstances (Case
1 – Case 4 ). The model is bilinear in the control variables to satisfy Case 3. For Case 4 and its
verification, the final condition is,

D1IH +D2NV +
1

2

6∑
i=3

Diu
2
i ≥ l1

(
|u1|2 + |u2|2 + |u3|2 + |u4|2

)m∗
2 − l2,

where for i = 1, . . . , 6, Di, l1, l2 > 0,m∗ > 1.

Theorem 8.1. Let Xd =
(
SH , IH , RH , SV , IV , SH(τ), IH(τ), RH(τ), SV (τ), IV (τ)

)
represent the state

vector with a time delay τ for each compartment. Similarly, extend the control vector to include delayed
controls,

℧d =
(
u1, u2, u3, u4, u1(τ), u2(τ), u3(τ), u4(τ)

)
.

Define the Lagrangian Ld and the HamiltonianHd for the optimal control problem, taking time delays into
account,

Ld = D1IH +D2NV

+
1

2

[
D3u

2
1 +D4u

2
2 +D5u

2
3 +D6u

2
4 +D7u1(τ)

2 +D8u2(τ)
2 +D9u3(τ)

2 +D10u4(τ)
2
]
.

(53)

The corresponding Hamiltonian is,

Hd(Xd,℧d,Λ) = Ld +

5∑
i=1

Λj

(
dXi

dt
−Xj

)
+

5∑
i=1

Λi+5

(
dXi

dt
−Xi(t)

)
, (54)

where Λ = (Λ1,Λ2, . . . ,Λ10) is the vector of Lagrange multipliers. This formulation ensures that the
dynamics of the system, including time delays, are fully represented in the optimal control solution.
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9 Solution to the Optimal Control Problem

Using Pontryagin’s Maximum Principle [23] for the solution of optimality system (49). Let u∗
i ,

for i = 1, 2, 3, 4 denote the optimal solution, then the adjoint variables say λi, for i = 1, 2, . . . , 10
exists. Let,Λd = (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10) represent the adjoint vectorwith time delays.
Similarly, let,

dΛ

dt
(τ) =

(
dλ1

dτ
,
dλ2

dτ
, . . . ,

dλ10

dτ

)
,

denote the delayed adjoint variables. Now, the adjoint system with time delays becomes,

dx

dt
=

∂Hd

∂Λd
,

0 =
∂Hd

∂℧d
,

dΛd

dt
= −∂Hd

∂Xd
.

(55)

These equations capture the dynamics of the adjoint variables, accounting for the time delays in
both state and adjoint variables. Using these conditions in Hd, we obtain a set of equations that
form the basis for solving the optimal control problem with time delays.

Theorem 9.1. In order to obtain results for the adjoint system (54) and the transversality condition, we
solve the control system in conjunction with the Hamiltonian H(54) for SH = S∗

H , IH = I∗H , RH = R∗
H ,

SV = S∗
V , IV = I∗V . The expression in (54) is the derivative ofH with respect to SH , IH , RH , SV , IV . The

criterion ∂H

∂ui
= 0 is applied to the optimal control characterization equations for i = 1, . . . , 4. Using the

adjoint variables and other parameters, this leads to the precise formula for the adjoint-controlled variables
u∗
i .

Proof. The system equation with time delay (49) in the Hamiltonian can be expressed as,

˙SH = ΛH + cNH − β1SHIV (t− τ)

1 + α1IV (t− τ)
(1− u1(t− τ))− µHSH ,

˙IH =
β1SHIV (t− τ)

1 + α1IV (t− τ)
(1− u1(t− τ))− (µH + δH)IH − γu4IH

1 + bu4IH
,

ṘH =
γu4IH

1 + bu4IH
− µHRH ,

ṠV = ΛV NV (t− τ)(1− u2(t− τ))− β2SV IH(t− τ)

1 + α2IH(t− τ)
(1− u3(t− τ))− µV SV − b0u2SV ,

˙IV = − β2SV IH(t− τ)

1 + α2IH(t− τ)
(1− u3(t− τ))− µV IV − b0u2IV .

(56)
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The optimal control system equations with time delay are

λ̇1 = − ∂H

∂SH
= 0,

λ̇2 = − ∂H

∂IH
= 0,

λ̇3 = − ∂H

∂RH
= 0,

λ̇4 = − ∂H

∂SV
= 0,

λ̇5 = − ∂H

∂IV
= 0.

(57)

The Hamiltonian H is given by,

H = D1HH +D2NV +
1

2
D3u

2
1 +

1

2
D4u

2
2 +

1

2
D5u

2
3 +

1

2
D6u

2
4 + λ1

˙SH + λ2
˙IH + λ3ṘH

+ λ4ṠV + λ5
˙IV .

(58)

The ideal controls are provided by,

u∗
1 = min

{
0,max

{
1, (λ2 − λ1)

β1SHIV
(1 + α1IV )D3

}}
,

u∗
2 = min {0,max {1, λ4ΛV NV + b0SV + λ5b0IV D4}} ,

u∗
3 = max

{
0,min

{
1, (λ5 − λ4)

β2SV IH
(1 + α2IH)D5

}}
,

u∗
4 = max

{
0,min

{
1, (λ3 − λ2)

γIH
(1 + bu4IH)2D6

}}
.

(59)

The requirements for transversality are

λ̇1(T
′
f (τ)) = λ̇2(T

′
f (τ)) = λ̇3(T

′
f (τ)) = λ̇4(T

′
f (τ)) = λ̇5(T

′
f (τ)) = 0. (60)

Thus, the optimal control system results in a modified set of equations for the adjoint variables
and optimal controls. While the provided equations involve intricate mathematical expressions, a
specific formulation of the time delay is necessary for detailed analysis. Consequently, the struc-
ture of the equations will depend on the specific form of the time delay, ensuring that optimal
control integration in the influenced model is stable.

10 Numerical Simulation

This section presents a detailed stability analysis of the human populations (susceptible, in-
fected, and recovered) within a vector-host disease model, incorporates time delays and a satu-
rated treatment capacity. The objective is to determine the conditions under which the disease
dynamics exhibit stability around the endemic and disease-free equilibria, both locally and glob-
ally. Numerical simulations are used to validate these theoretical results.
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(a) (b)

Figure 1: Stability analysis of SH in a delayed vector-host disease model: (a) 3D plot view and (b) 2D plot view.

Figure 1 illustrates plausible situations in which overcrowding in the healthcare system might
result in treatment capacity limitation. Tomimic the effects of increased treatment efforts and pre-
ventativemeasures, the control function adjusts the recovery rate and potentially the transmission
rates. When successful control methods are implemented, the models show a significant decline
in the number of afflicted humans. When treatment capacity is sufficiently enhanced to manage
the infected population without reaching saturation, this decline becomes more noticeable. Ini-
tially, the susceptible population may decrease due to infection, but as more individuals recover
or receive appropriate treatment, the population either stabilizes or grows. Efficient treatment
reduces the number of sick individuals and increases recovery rates, there is a noticeable rise in
the recovered population, denoted by parameters such as Λ1 = 9894, Λ2 = 50, µ1 = 83, µ2 = 0.9,
γ = 90, δ1 = 0.4, β1 = 90, β2 = 0.027, b = 0.232667, u = 1, α1 = 0.3, α2 = 0.2. Reducing the vector
population is essential for breaking the transmission cycle. As the number of infected individuals
rapidly decreases and the number of recovered individuals increases, the overall prevalence of the
illness declines. These results support the theoretical predictions of stability analysis and empha-
size the importance of timely and effective control measures in managing vector-host infections
[10, 30].

(a) (b)

Figure 2: Stability analysis of IH in a delayed vector-host disease model: (a) 3D plot view and (b) 2D plot view.

Figure 2 shows that the improved treatment capacity initially leads to a decrease in the number
of afflicted humans. But over time, the decline is not sustained since the management technique
has little impact on the vector populations that spread the illness. While there is a modest increase
in the vulnerable human population, but no significant difference is observed. This implies that
the control technique is not effective in preventing the spread of new illnesses. Although the num-
ber of people who have recovered increases, indicating improved treatment efforts, the constant
influx of new infections through the vectors cancels this progress. The simulations show that there
is little change in the vector populations. A never-ending cycle of new infections is caused by the
lack of impact on the vector populations and the vulnerable human population, despite the initial
decrease in the number of sick humans [32].
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(a) (b)

Figure 3: Stability analysis of RH in a delayed vector-host disease model: (a) 3D plot view and (b) 2D plot view.

Figure 3 illustrates how the present management technique results in an increase in the vulner-
able vector population. This suggests that the existing controls are not successfully lowering the
population of vectors, which is increasing the quantity of vectors that can spread the illness. The
fact that more people are being sick further indicates that the control technique is not effectively
breaking the cycle of vector-human transmission. This might be because vector control measures
are not implemented enough or their effects take longer to manifest. The high recruiting rate com-
pared to the rate of new infections probably causes the dramatic growth in the vulnerable human
population. This suggests that the infection pressure from the vector population is high evenwhen
there is an increase in the number of individuals by the ratio Λ1 = 10, Λ2 = 50, µ1 = 83, µ2 = 0.1,
γ = 0.3, δ1 = 0.4, β1 = 0.25, β2 = 0.025, b = 1/60, u = 1, α1 = 0.3, α2 = 0.2 in the vulnerable pool.
A measure of the success of treatment and recovery efforts may be seen in the rise in the number
of recovered humans. The number of infected vectors is growing, suggesting that there is still a
significant level of human-to-vector transmission. This may result from inadequately lowering the
transmission rates or vector populations by actions that are not being implemented promptly or
from inefficient vector control tactics [33].

(a) (b)

Figure 4: Stability analysis of SV in a delayed vector-host disease model: (a) 3D plot view and (b) 2D plot view.

Figure 4 shows how the susceptible human population is increasing as a result of the man-
agement strategy’s ability to reduce the number of infected vectors. This rise indicates that fewer
new infections are reaching the susceptible population. Regarding the infected human popula-
tion, it appears that the decrease in the number of infected vectors significantly reduces the rate of
transmission to humans. This outcome demonstrates the effectiveness of the control techniques in
breaking the transmission cycle. The control method has no direct effect on the recovery rate, as
the number of recovered individuals remains unchanged even as the infection rate decreases. This
constancy suggests that treatment efforts are ongoing, with the primary effect being a reduced in-
fection rate. As the number of infected vectors decreases, the susceptible vector population may
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increase or remain stable due to reduced competition and increased availability of resources. This
result is a direct consequence of effective vector control measures. As evidenced by the significant
drop in the infected vector population, vector management measures have reduced the number
of vectors capable of spreading the illness. This reduction is crucial in minimizing the impact of
infections on the human population. The increase in the susceptible human population, resulting
from the disruption of the vector-to-human transmission cycle, suggests a decline in the rate of new
infections. A reduced population of infected vectors means fewer infected humans, which in turn
leads to lower transmission rates. Ongoing treatment efforts are reflected in the steady number
of recovered cases, while the management strategy primarily reduces, rather than increases, the
rate of new infections. The vector component of the disease cycle has been successfully reduced
by vector control approaches, as seen by the significant drop in the infected vector population.

(a) (b)

Figure 5: Stability analysis of IV in a delayed vector-host disease model: (a) 3D plot view and (b) 2D plot view.

Figure 5 illustrates how the management method lowers the incidence of new infections, lead-
ing to an increase in the vulnerable human population. This rise, indicative of effective preventive
efforts, shows that fewer people are moving from the susceptible to the infected group. The in-
fected human population declines, indicating that the control methods are successful in reducing
the transmission rate and increasing the recovery rate. The greater number of recovered indi-
viduals further demonstrates the effectiveness of the control technique in improving recovery.
This improvement is the result of better healthcare interventions and treatments, which have in-
creased the number of people recovering from infection. As the number of infected vectors de-
clines, the susceptible vector population may increase. This suggests that although the vectors are
still present, their ability to spread the illness is diminished, as reflected in parameters such as
Λ1 = 10, Λ2 = 50, µ1 = 0.1, µ2 = 0.1, γ = 90, δ1 = 0.4, β1 = 0.25, β2 = 0.025, b = 1/60, u = 1,
α1 = 0.3, α2 = 0.2, which results in fewer new infections in humans. The sharp reduction in the
infected vector population demonstrates the efficacy of vector control techniques in limiting the
spread of the disease to humans. The significant rise in the recovered population indicates the
success of enhanced treatment programs and medical interventions. The decrease in the infected
human population shows that the management methods are effective in halting transmission and
promoting recovery. As a result of effective preventive measures, there are fewer new infections,
as evidenced by the increase in the susceptible population. The reduction in the number of in-
fected vectors underscores the importance of vector management strategies in breaking the cycle
of transmission.

In Figure 6, the comparison of vector-host coexistence shows an unmanaged situation with a
significant rise in the vulnerable human population. This increase indicates that efforts to prevent
infections have been successful in lowering the rate of new infections. Under the control methods,
the number of infected humans declines dramatically, demonstrating that improved treatment
capacity and reduced transmission rates are effectively decreasing the infected population. In
the controlled situation, the population of recovered humans rises significantly, reflecting a larger

199



S. Jothika and M. Radhakrishnan Malaysian J. Math. Sci. 19(1): 177–205(2025) 177 - 205

number of individuals moving from infection to recovery due to enhanced treatment capacity and
improved recovery rates.

(a) (b)

Figure 6: Coexistence of stability analysis in delayed vector-host disease-1: (a) 3D plot view and (b) 2D plot view.

Under the management procedures, with parameters Λ1 = 422, Λ2 = 500, µ1 = 0.1, µ2 = 5.1,
γ = 0.4, δ1 = 2.4, β1 = 4.2935, β2 = 0.7595, b = 1000, u = 0.1, α1 = 0.9, α2 = 0.7, the number
of vulnerable vectors declines. This decrease highlights the effectiveness of vector control tactics
in reducing the number of vectors at risk of becoming infected. In the controlled setting, the pop-
ulation of infected vectors drops drastically. Effective vector control strategies lower the infection
burden by reducing the number of vectors capable of transmitting the disease to humans. The
overall control technique greatly improves the coexistence and stability of the various population
compartments in the disease model.

(a) (b)

Figure 7: Coexistence of stability analysis in delayed vector-host disease-2: (a) 3D plot view and (b) 2D plot view.

Figure 7 shows a significant rise in the number of susceptible and recovered humans, suggest-
ing that the control methods are effectively improving recovery rates and successfully preventing
new infections. The notable reduction in the number of afflicted individuals indicates the efficacy
of the controlmethods inmitigating transmission and promoting recovery. The decline in both the
susceptible and infected vector populations further emphasizes the success of the vector control
strategies, with parameters Λ1 = 422, Λ2 = 500, µ1 = 1.1, µ2 = 0.5, γ = 1.4, δ1 = 0.5, β1 = 4.975,
β2 = 0.7595, b = 900, u = 0.5, α1 = 0.9, α2 = 0.7, in disrupting the transmission cycle and reduc-
ing the risk of infection. By contrasting the controlled situation with the uncontrolled baseline, it
is evident that the integrated control technique produces a more stable and favorable outcome for
managing the vector-host disease dynamics.

Figure 8 shows oscillatory behavior, varying around a point of equilibrium, according to the
simulations. The temporal lags in the transmission mechanism and the nonlinear feedback be-
tween the susceptible and infected populations are responsible for these oscillations. As the vul-
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nerable population grows, more people become sick. The infected human population shows only
slight variations in response to these oscillations, remaining largely steady. Although the vulner-
able population fluctuates, the stability indicates that the overall infection rate is under control.
Oscillatory behavior is also observed in the recovered human population, with fluctuations oc-
curring as more individuals recover after contracting the virus. The recovery rate stabilizes as the
number of new infections decreases.

(a) (b)

Figure 8: Oscillations of disease transmission in population dynamics: (a) 3D plot view and (b) 2D plot view.

The susceptible vector population does not exhibit fluctuations, suggesting that the vector con-
trol strategies are effective and prevent oscillatory behavior in the vector population. Similarly, the
population of infected vectors remains relatively unchanged. According to the stability, with pa-
rameters Λ1 = 10, Λ2 = 50, µ1 = 0.1, µ2 = 0.9, γ = 90, δ1 = 0.4, β1 = 0.903, β2 = 0.025,
b = 0.0166667, u = 1, α1 = 0.3, α2 = 0.2, the infected vector population can be effectively man-
aged through vector control techniques. The oscillations reflect the dynamics of the infection in-
teracting with the delayed recovery process. Despite the fluctuations in susceptible and recovered
populations, the relative stability implies that overall infection rates remain under control, which
is crucial for preventing large-scale epidemics.

The interaction between time delays and nonlinear dynamics in the vector-host disease model
can lead to oscillatory behavior in both the susceptible and recovered human populations, as
shown in the numerical simulations. Understanding the factors contributing to this oscillatory
behavior can help in better planning public health interventions, ensuring the management of
vector-host diseases in a stable and advantageous manner.

11 Advantages and Limitations

Time delays and treatment saturation add realism to disease models by simulating real-world
delays in symptom development or treatment progression, as well as the constraints on medical
resources during pandemics. These factors enhance the understanding of disease dynamics and
help in predicting how diseases will spread when faced with challenges such as limited resources
or delayed treatments. Bymodeling various scenarios, themodel aids policymakers in developing
more effective control strategies. Stability analysis further optimizes interventions by providing
insights into how equilibrium states, such as the basic reproduction number (R0), change with
parameter adjustments.

However, time delays and saturation increase system complexity, making it harder to derive
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analytical solutions, often requiring the use of numerical methods that may offer less intuitive
understanding. The inclusion of additional factors, such as treatment limitations and delay du-
ration, complicates accurate estimation, especially when data is scarce. While these complexities
can make the model more realistic, they can also obscure the underlying dynamics. Additionally,
incorporating toomany processes can lead to overfitting, which limits themodel’s generalizability
to other populations or conditions.

Future research can integrate stochastic dynamics [6] into our vector-host disease model by
incorporating environmental and demographic noise throughWiener and Poisson processes to in-
crease the model’s robustness and applicability. Stability analysis would employ stochastic meth-
ods, and optimal control could be refinedusing theHamilton-Jacobi-Bellman equation. Numerical
simulations, such as the Euler-Maruyama scheme, would assess the impact of stochastic fluctua-
tions on treatment strategies, enhancing model accuracy in predicting outcomes and devising op-
timal interventions. Key challenges, including parameter estimation, computational complexity,
and uncertainty quantification, will provide valuable insights into managing vector-host diseases
in practical applications.

12 Conclusion

The mathematical model of vector-host illness is examined, with an expansion to include the
temporal dynamics of disease transmission and prevention measures. The stability analysis pro-
vides a deeper understanding of the system’s behavior in both endemic and disease-free scenar-
ios, particularly when time delay is considered. Additionally, the optimum control problem with
time delay and saturated treatment functions is designed and formulated using control variables.
The influence of delayed therapies on disease dynamics is revealed by simulation findings that
incorporate time delay into the optimum control framework. These findings clarify the complex
interactions between temporal factors and the most effective strategies for controlling vector-host
illnesses, thereby enhancing the model’s accuracy.
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